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ABSTRACT

The effects of the state excitation matrix Q, in the smoothing routine of an extended

Kalman filter is investigated. A new algorithm to derive the Q, matrix is also developed.

In addition, the accuracy of the filter was substantially improved by implementing a new

maneuver detection techniqu:. Several tracking scenarios are simulated and analyzed for

noise free and noisy cases and statistical data are obtained for the maneuver detection

technique. The program codes are included as appendices.

14
Q3LIISBNI

AdQ®

J14a

Acoession For

NTIS GRA&I

DTIC TaB g
Unannounceq

Justification D

By.

| Distributieny —

Availabiliby Codes
[avall ‘andzor ]
Diat Special

ﬁzl




THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not
have been exercised for all cases of interest. While every effort has been made, within
the time available, to ensure that the programs are free of computational and logic er-
rors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.
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I. INTRODUCTION

During the last century, man has reached out over ever-increasing distances.
Manmade devices have been sent beyond our solar system and to the deepest points of
the oceans. These recent developments have focused new attention on an existing
problem: how to accurately track long-range devices along their voyages in unknown
environments. This problem is made even worse when only passive sensors can be used.
One particular problem applicable to naval technology is tracking a ship by lines of
bearing obtained by passive sensors. A powerful method of dealing with this problem,
known as Kalman filtering, has been used with great success since Kalman and Bucy
[Refs. 1, 2 ] first presented its principles 30 years ago.

This report further develops an existing Kalman filter to which a fixed-interval
smoothing algorithm has been added. In this research, we examine how the overall ac-
curacy of the extended Kalman filter is affected by applying a noise process in the
smoothing algorithm. We also develop a new maneuver detection technique and study
how the filter performs when using it. This research is based on previous work done by
Lieutenant Thomas K. Bennett [Ref. 3] and Lieutenant William J. Galinis [Ref. 4].
They investigated the problems of two ships tracking a third only by passive radio di-
rection finding equipment.

This report is organized into six major sections. The first section is this iniroduc-
tion, which serves as a guide to approaching this report. In Chapter II, the physical
tracking system used for simulations in this report is modeled. Chapter III gives the
basic principles of the Kalman filtering and fixed-intesval smoothing. In Chapter 1V,
we investigate how the noise process in the smoothing routine and a new maneuver de-

tection technique affect the accuracy of the extended Kalman filter. ¢ :pters V and VI

]




show the simulations and present the conclusions. The appendices list the program

codes used in this research.




°  PROBLEM STATEMENT

A. THE SYSTEM MOL _

The system used in this thesis includes two sensors and one target ship. A two-
dimensional cartesian coordinate system is used, in which the positive x and positive y
directions correspond to East and North, respectively. The target and sensor ships are
both free to move throughout this coordinate space. For simplicity, the following as-

sumptions are made during the development of this model: [Ref. 4]
o The effect of the wind, current and other forces on the ship are negligible.
e The ocean surface is considered flat; the curvature of the earth is neglected.

¢ Course and speed inputs are taken as constants (i.e., step inputs).

From (Refs. 5: p. 168,6: pp.12-13], the discrete-time, state-space representation - {

the model described above is
Xge1 = O Xy + Dk (2.1

where

Xg. = State estimate vector,

Xz = state vector,

¢x = state transition matrix and

wy = disturbance.

A state vector x, is defined to contain the minimum number of the elements neces-
sary to describe the target. A fourth order state vector for this model, then, consists of

the position and velocity of the target in both x and y directions.



XK
A 1K
xK = (2.2)
Yk
L.yK..

Next, a state transition matrix ¢ is chosen to fit the target dynamics. Since the target

modeled in this problem moves linearly at a constant velocity, the ¢, matrix is

(1 TO0 O

0100

dx= (2.3)
001T

0001

where T is the observation interval.
The unpredictable accelerations of the target are taken into account using the noise
vector @,. The noise vector is a function of the transition matrix ", and the acceleration

matrix a,:

A axx
wK=I'KaK= rK (24)
g
where the noise transition matrix I'p is defined as
T2 o
T O
[g= ) (2.5)
0 T2
0 T




Putting Equations (2.2) through (2.5) into Equation (2.1), the final state-space

equation for the system modeled in this problem can be written as

- -
r~ - -1

xen| [0 T 0 0|[x] |72 o

i | {010 0llie| | T 0 |[a
- + ) (2.6)
YK+ 001 Ty 0 T2]la,

.‘p“""d L0 00 IJ-J}K- i 0 Tj
B. THE MEASUREMENT MODEL

For linear systems, measurements can be modeled using the following linear meas-

urement equation. [Refs. 5: p. 168,6: pp. 12-13]
Zgar = Higp + Hgp 2.7)

where

Zg., = measurements,

H = observation matrix,

Xg,4 = state estimate vector and

fr., = measurement noise.

Unfortunately, many real systems are not linear. The system we studied in this
thesis falls in this category. Although this system has a linear state-transition equation,
it has a non-linear measurement equation, since the measurements, lines of bearings, are
non-linear functions of the system states. As it can be seen from the geometry of the
typical scenario in Figure 1, an appropriate model with measurement noise included for

the non-linear measurement process of this system would instead be [Ref. 3]

Xp = X,
By = tan“[y"—_;ff] + Dy (2.8)
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Figure 1. Typical Tracking Scenario

where
f,x = observed lines of bearing by a sensor ship n, at time k,

X » Yy = position of the target ship on X, y axes, at time K,

Xag » Jag = Position of the sensor ship n on x, y axes, at time k and




Hr = measurement noise.

Although there are several types of noise which disturb the measurements, it is the
atmospheric noise that makes the major contribution in the frequency range of interest
in this study. This is generally a non-white, non-Gaussian process. However, it can be
considered to be a white Gaussian process over an extended period of time in order to
more easily implement the extended Kalman filter. In this application, a white noise

model is used for the study of noisy cases.




III. THEORY

A. KALMAN FILTER

The Kalman filter removes random noise from the state estimates of a system by
adding a weighted error term to the predicted state estimates. The error term is simply
the difference between the filter’s prediction of the measurement and the observed value
of that measurement at a particular time. The weighting factor, also called the filter
gain, is based on the predicted covariance of error between estimates and observed val-
ues. The basic operation of the filter can be described in several steps:

A priori estimates of the state x,,, are projected in time to some predicted state es-
timate Xy,, s, and the predicted error covariance P,,, . of these estimates is calculated.
The filter then calculates a gain vector Gg,,, based on the predicted error covariance.
As mentioned before, the error is the difference between observed and predicted meas-
urements. Next, this error is multiplied by the filter gain and the result is added to the
predicted state estimates to give the updated estimate Xy.,/r,,. The updated value of er-
ror covariance Pg,, ., is also calculated.

In short, the Kalman filter is a linear, minimum variance estimator. A block dia-
gram of the filter is in Figure 2. A more detailed explanation of the filter's operation
will be given later in this chapter. For further information on the derivation and appli-

cation of the Kalman fiiter, the reader should refer to [Refs. 7,8,9]

B. EXTENDED KALMAN FILTER
The Kalman filter explained above calculates the optimal estimate for the states of
linear systems. As mentioned before, the system we studied in this thesis has a linear

state-transition equation and non-linear measurement equation. Therefore it is not lin-
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Figure 2. Block Diagram of the Kalman Filter.

ear. The adaptation of the Kalman filter to a non-linear system is called the extended

Kalman filter.

For the system studied in this thesis, the non-linear measurement equation can be

defined as:

Zgpr = H(Zgyy) + gas (3.1)




We see that the only difference between this equation and the linear measurement
equation (2.7) is the observation matrix A. The A matrix is now a function of the sys-
tem states. In order to linearize the measurement equation, we have chosen in this thesis
to expand the observation matrix H in a Taylor series around the current estimate and
then to use only the first order term.

The following linearized form of the measurement equation is obtained directly from
previous work on this subject. Its development will not be repeated here since an ex-

cellent derivation of it is presented in these reports [Refs. 3,4]. The equations are:

A A
Yigrux Vnga Xigyx ~Xnge
Hy = — 0o - — 0 (3.2)
RK+1 RK+I

and
Ry=G.  —yu Pt & —x, )
K+1 = Wig, g ~ Vg 1 V7 4 Nt

where

J”r,m X ﬁ,m = The position estimates of the target at time K+ 1, based on the

previous value at time K.
Xog 1 Yag,, = The position of the sensor ship n at time K+ [.

Once the measurement process is linearized, the normal linear Kalman filter

equations can be used in the estimation process. The following Kalman filter equations,

taken from {Ref. 5] and derived in [Refs. 5,10], are:

Kok = Oy (3.3)
Peprix= ¢PK/K¢T+ Qk+1 (3.49)

10




T _
Gk = PrsrjxHis [ Hesi P x+1/KH;+1 +R]™ (3.5)

Eriier = ek + Gl 2z — HienrRierx) (3.6)
Pyriyesr =L = Gy Hy 1 WPy i (3.7

The variables are defined as follows:
Xroyx = predicted state estimate,
Xyx= state estimate (state vector),
¢ = state transation matrix given by equation {2.3),
Py, ,x = predicted state error covariance,

Pg;x = state error covariance,

)
)
|

= state excitation matrix,
Gr.. = Kalman gain matrix,
R = measurement noise covariance matrix and
Hy,, = linearized measurement matrix given by equation (3.2).
The measurement noise covariance matrix R is a indication of the accuracy of the

measurements made. This matrix is:
T
R= [“K"K] (.3)

The state excitation matrix Qy., used in equation (3.4) represents the system noise
process. This term is a measure of how closely the svstem model actually represents the
real system arid to what degree the system is affected by noise. The derivation of the
Qr., matrix will be studied in the next chapter.

As can be seen from equations (3.3) through (3.7), the basic operation of the filter

is a relatively straightforward recursive process. But the filter must be initialized before

11




processing the measurement data. When the filter is initialized, no prior value for the
state estimate Xy, exists. Therefore the value of the first observed position is assigned
to it. The coordinates of observed positions can be calculated from the two lines of
bearings by using the following equations:

[ yrtan(8y) +y tan(8)) +x, — x
i tan(@,) — tan(6,) -y | tan(8,) + x, (3.9)

Y= (3.10)

[ Y2 tan(02) +y1 tan(e]) + Xy — Xy
tan(8,) — tan(8,)

Since there is no prior velocity information available at the moment of initialization,
the initial velocity estimate is taken as zero. Figure 3 shows the initialization procedure.
Since the initial state estimates will have some error, we pick some starting values
for the errors in initial position and velocity to initialize the error covariance matrix.
These are 100 nautical miles (Nm) in position and 0.5 Nm per minute (i.e., 30 kts) for

velocity [Refs. 3,4]. The error covariance matrix can now be initialized as:

(10000 0 0 0

0 025 0 0
Py_y= (3.11)
0 0 10000 0

0 0 0 025

Once initialized, the filter is ready to process the measurements. First, the state es-
timate and state error covariance matrixes are projected to the present time using the ¢
matrix. Next, these predicted state estimates are used to calculate the H matrix. Finally,
the Kalman gains are calculated. The Kalman gain is a measure of where the filter’s
confidence is being placed: either in the filter’s estimation or in the current observation.

As is se in equation (3.5) the value of the Kalman gain is based on the predicted error

12
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Figure 3.

The Initialization Procedure.

covariance matrix. If Py,,r is large the Kalman gain will approach unity. If Proyx is
small, the gain will approach zcro due to the finite value of the measurement noise
covariance R. By manipulating equation (3.6) we can see how varying the Kalman gain

affects the process of updating state estimates.

A A
Xgpr/ket = U1 = Gy Hypr Jxgs g + GraiZre

13




As mentioned before, this equation shows that a large Kalman gain places more
weight on the current observation. On the other hand, a small gain causes the factor
of L1 — Gy, Hy.,] in equation (3.12) to approach unity, in this sense placing more em-
phasis on the filter’s estimates. As can be seen from equation (3.7), the factor of

[I— Gg.iz.1] is used to update state error covariance matrix.

C. SMOOTHING ALGORITHM

Smoothing is a non-real-time data process used to reduce error in state estimates
produced by a Kalman filter. Let time K be within the time interval 0 to N, so that
0< K< N. A Kalman filter’s state estimate for time K, denoted by Xy, is based only
on measurements occuring up to time K. But the smoothed state estimate is based on
the measurements that occurred over the entire time interval 0 to N. This smoothed
estimate is denoted by x,,,» The smoothed error covariance at time K is represented by
Py This quantity has no impact on the calculation of the smoothed estimate X,y but
it is an indicator of how well the smoothing filter is working. If P, < Py, the
smoothed estimate is better than or equal to its filtered estimate except for the last data
point where both smoothed and filtered estimates are equal. The smoothing algorithm
operates backwards in time, beginning at time N and ending at time zero. Therefore,
since the last filtered estimate at time N is taken as the first smoothed estimate, Py,y
must be equal to Py, at this last data point. This can be seen graphically in Figure 4.

Meditch [Ref. 5] places smoothed estimates into three classes:

Fixed-Interval smoothed estimate , denoted by X,y where K = 0, 1, ..., N-1; Nis a
positive integer.

Fixed-Point smoothed estimate , denoted by x,,, whereJ = K+1, K+2, ..;Kisa
fixed integer.

Fixed-Lag smoothed estimate , denoted by Xy .y Where K = 0, 1, ....; N is a fixed

positive integer.

14
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Figure 4. Advantage of the Performing Optimal Smoothing.

In this thesis a fixed-interval smoothing filter is used. The basic block diagram of
this filter is shown in Figure 5. The equations to implement the smoothing algorithm
are obtained The equations to implement the smoothing algorithm are obtained from

(Ref. 5: pp. 216-224] and are shown below:

Ag = Pyxd Priix (3.13)
Xk = Xk + Ax[ Zxpin— 9K+1/k] _ (3.14)

15




FROM EXTENDED KALMAN FILTER

. ~—
- - S
-

-~
[ T ~
XK«HIKI S Xeix

SMOOTHED STATE
(V) AK > .é ESTIMATE X

*

B Xxsun
DELAY B
K=N-1..0
Figure 5. Block Diagram of the Smoothing Filter.
T
Pyyn= Pyyx + AL Pgyyyn — Pryryx Ak (3.15)

where
Ay = smoothing gain matrix,
Xg = smoothed estimate at time K,
Pyy = smoothed error covariance at time K,

Xy and Py, = state estimate and error covariance stored by the extended Kalman

16




filter routine and

Xgoyr and Py, x = predictéd state estimate and predicted error covariance stored

by the extended Kalman filter routine.

Several sources were helpful in understanding these equations. [Refs. 7,8,11] As it
can be seen from equation (3.15), the smoothed estimate provided by a fixed-interval
smoothing algorithm is simply the extended Kalman filter estimate adjusted by a
weighted error term. The error term is the difference between the smoothed estimate
calculated for the previous data point and the predicted estimate calculated by the ex-
tended Kalman filter. It is also clear that the fixed-interval smoothing algorithm uses
the values of Xyx and X, Which are stored in the Kalman filter routine for each iter-
ation. Additionally the values of P, and Py, must be provided for the smoothing

routine.

17




IV. THE NOISE PROCESS IN FIXED-INTERVAL SMOOTHING
ALGORITHM.

A. GENERAL

This work is devoted to studying the effects of the state excitation matrix Qy in the
smoothing algorithm. To accomplish this, the magnitude of this matrix is changed dur-
ing the assumed maneuver periods and the effects of these changes on the smoothing
algorithm’s accuracy are investigated. Also, a new maneuver detection technique is de-

veloped to determine the maneuver periods.

B. NOISE PROCESS
The state excitation matrix Q, represents the system noise process. This matrix is

a function of the acceleration matrix a, and the noise transition matrix I, so that
A AT
Qx = [ dxdok] @.1)

where @, is given by equation (2.4). Substituting equation (2.4) into equation (4.1), we

find

E[a,fx] E[axyx]

g rr (4.2)
E[ a)'xx] E[ a}?x]

Qx=

For reference, the noise transition matrix [, is given by equation (2.5). The Q, matrix
allows for any random target maneuvers and also serves to account for any model in-
accuracies. These inaccuracies are the differences between the true action of the target
and its motion as characterized by equation (2.1). Q also prevents the gain matrix G,

from approaching zero by ensuring some uncertainty in the predicted state error

18




covariance matrix Pg, . By substituting equation (2.5) into, the equation (4.2),

equation (4.2) can be expanded as follows:

-

LHEI LeaIr L e L a,ar]
S e[ 1T Ha)? 5 Eag 1T  Ela,,IT
1 fta, a1 L Ea, 37 LHEIT L]
L-;—E[a},XKZIT3 ECa, T’ -%—E[ajx]T’ E[4,]T°

Ox= (4.3)

The velocity of the target can be described in terms of its linear velocity and heading.

From Figure 1 on page 6, this relationship is given as
Ve =V, 5in G, 4.4)
v, = v,cos @, (4.5)

By differentiating equations (4.3) and (4.4) we obtain the target’s acceleration in the

X and y directions:
a,=v,sin©®, + v, cos O,

Yy

. VX -
x = V- + v@,—v;'

v .
ag= i~ +Op, (4.6)
and

a,=v,c0s @, —v0©,sin O,
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. v
o X
a,= V,T‘F v,@,—v

vy

a,= v,—- + O, 4.7

The noise is initially described by

Efv1=E[0,]=0 (4.8)

E(5] =g, (4.9)
and

9] =05, (4.10)

By squaring equations (4.6) and (4.7) and taking the expectations, the variances of

target’s accelerations, a, and q,, are:

E[a,:x] [ ]203‘ + vzaze 4.11)

and

E[ajx] = [ _vy_] oy, + v,“:a(za 4.12)

We also find that the covariance of g, and 4, denoted by q,, or a,, is
2
%y, 2 2
E[axyx] = E[any] =y, (T,') — g, (4.13)
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From [Ref. 12], the position of the target assuming speed is constant

Xy =Xg+ Ve, T (4.19)

Yer1 =Yg+ v, T (4.15)

and the position of the target assuming acceleration is constant:

Xgpy =Xg+ v, T+ -%- axxT2 (4.16)
1
Ve =yx+ v, T+ a,T 4.17)

By comparing the equations (4.14) thorough (4.17), it can be seen that the expected

position errors due to the unknown accelerations of the target can be defined as

EFjn] =5 ELag,] (4.18)
and
Elyxnl= -;- ECa, 1T (4.19)
The variances of these errors are
(%] = + a3 ]T | (4.20)
and
Ekn] =+ Ela 1T (4.21)
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By comparing equations (4.20) and (4.21) with equation (4.3), we see that these
equations are equal to elements (1,1) and (3,3) of the O, matrix. Out of all the elements
in the Qp matrix, these two elements have the greatest effect in compensating the posi-
tion errors. Since it is most important to compensate the error on the axis which has
the maximum error variance, the algorithm developed determines the Q, matrix using
these elements for the magnitude of the Q, matrix. This algorithm first compares the
error variances on the x and y axes, o, and g,, to determine which axis has the greater

error variance. If g, > g,, Qp matrix becomes

Ox= Q(I,I)I (4.22)
where [ is the unity matrix and

a1y = % E[a; ]T*
If 0, < g,, the O, matrix is

Qx=0s3! ) (4.23)

where
1 2
Q=g El4,JT"

C. THE STATE EXCITATION MATRIX IN THE FIXED-INTERVAL
SMOOTHING ALGORITHM

As mentioned before, the fixed-interval smoothing filter uses as input the state esti-
mates and error covariances calculated by the forward-time Kalman filter. But in order
to see the effects of the state excitation matrix O, in the smoothing algorithm, the pre-

dicted error covariance matrix Py, is recalculated in the smoothing routine. The pre-

22




dicted state estimates X, are also recalculated in the smoothing routine. By
recalculating these matrices, we attempted to get a feeling for the expected magnitude
of the smoothing error. The intent was to enable the the filter to carry along its own
error analysis. The new system of the recursive equations for the fixed-interval

smoothing becomes: [Refs. 4,13]

X1k = HXxix (4.29)
Pgiyx=9P x/x¢r+ Ox (4.25)
Ag = Py yd TPri X (4.26)
Xgiv = 2gyx + Ak Fgeyn — Treyx] (4.27)
Py = Py + AL Pyyyyn— Prayjx 1Ak (4.28)

As seen from equation (4.26), the smoothing filter gains are a function of the error
covariance. As the predicted error increases, the smoothing gains decrease due to the
inverse relationship between smoothing gains and the predicted error covariance matrix.
In this way the smoothing filter can compensate for a large expected error by placing
more emphasis on the Kalman filter estimates. By substituting equation (4.24) into

equation (4.27), we obtain
"?I(/N = J?qu +Ax[ Xgp N~ 4’5\71(/1(]
.,X\'K/N= [I—AK(b]'QK/K+AK‘GK+I/N (4.28)

Equaticn (4.28) shows that a small 4, causes the factor of [I— A,¢] to approach

unity, thereby placing more emphasis on the forward-time Kalman filter estimates Xy, -
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We can exploit this behavior of the smoothing filter and use it to adapt the smoothing

filter to detected target maneuvers.

D. MANEUVER DETECTION

Should the target maneuver during the tracking process, the filtered estimates tend
to diverge from the true estimates. This introduces error into the state estimates.
Therefore a procedure must be developed to detect the target’s maneuvers. This can be
accomplished by monitoring the filter residual process.

The residﬁal process of the extended Kalman filter is taken as the difference between
the observed position and the filter’s predicted position estimates. This process can be

defined as
|z — Xkt | (4.29)

The maneuver detection technique implemented calculates the residual value for each
observation and compares this to the two maneuver gates. The gates are defined as
three times and eight times the predicted standard deviation. Some of the principles
underlying this technique are presented in [Ref. 14]. To define the predicted standard
deviation, error ellipse equations are used. More detailed information about error el-

lipses can be found in [Ref. 6: pp. 17-18]. These equations are:

2
ox+0y  coxy)

2 =
oy =5+ —— (4.30)
2, 2
L2 %xto,  cov(xy)
%=T"2 " sin20 (4.31)

where
o and ¢ = variances in the original cartesian coordinate system,

o and ¢} = variances along the major and minor axis oriented by
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6= % tan[ -2—23@ ] (4.32)

oy — 0y

By taking the square roots of equations (4.30) and (4.31), the standard deviations

on the x’ and y’ axes of the error ellipse are

2 2
\/ ax+ 0, covixy)
axl = +

3 sin 20 (4.33)
and
2 2
ox+0oy,  cov(xy)
oy = \[ 2 sin28 (4.34)

The maneuver detection algorithm compares the two standard deviations which are
represented by the lengths of the x* and y* axes of the error ellipse shown in Figure 6.
It selects the larger one as a predicted standard deviation, allowing the gates to take on

the following values:
LOWER_GATE =30y
and

UPPER_GATE = 8ay

where oy is the larger of the two standard deviations, a,. or o,.

The reason for choosing the value of 3o, for the lower gate is well explained in [Ref.
14). The value of the upper gate, known as a “Glitch” gate, is dependent on the opera-
tional characteristics of the target. This gate rejects motions that the target could not
possibly make. In our problem, extremely high linear or tangential accelerations are

examples of such behavior. When the residual exceeds this gate, the filter recognizes
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Figure 6. Error Ellipse

that this motion is impossible for the given target and so must be due to noise. The
value of 84, gave the best results in this application.
For each observation, the calculated residual is compared to the two gates by the

maneuver detection algorithm in the extended Kalman filter routine. If the residual is
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less than the value of the lower gate, the filter continues on and processes the next ob-
servation. If the residual is larger than the value of the upper gate, the filter ignores that
observation by setting filter gains equal to zero, thereby making the state estimates equal

to the predicted estimates,
A A
XK+1/K+1 = XK41/K (4.35)

This procedure will work well for isolated bad observations. However, if there are se-
veral consecutive bad observations, the filter can conceivably lose track of the target as
the filter’s state estimates diverge more and more away from the actual target states.
To remedy this, the extended Kalman iilter sets the filter gains equal to zero only for the
first of two consecutive bad observations but uses non zero gain for the second. If the
residuals of the two consecutive observations are in the zone between the two maneuver
gates, shown as concentric circles in Figure 7, a maneuver is detected and compensation
algorithm begins. The value of two provides a trade-off between fast response and low
false alarm rates.

The maneuver detection algorithm does not run a second time in the fixed-interval
smoothing routine, since it can use the maneuver times detected in the extended Kalman
filter with no loss of accuracy. Additionally, the fixed-interval smoothing algorithm
“backs up” and considers the first point ignored by the Kalman filter as a maneuver
point, since it knows that if the maneuver is detected at some observation time in the
Kalman filter routine, it must have started one observation earlier.

During the compensation, the state excitation matrix Q, is increased by multiplying
the coefficients along the main diagonal by a factor of 2.0. These coefficients account
for random course and speed changes of the target. As the Q, matrix is increased, the
predicted error covariance Py, is also increased because of the direct effect of the Qg

matrix on th nagnitude of the predicted error covariance. And, as the P, ,x matrix
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Figure 7. Diagramming the Maneuver Detection Technique

increases, the outputs of both the extended Kalman filter and the smoothing filtcr are
affected as explained before. The multiplicative constant of 2.0 was found by trial and

Crror.
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V. COMPUTER SIMULATIONS

A. GENERAL

The SHIPTRACK.FOR extended Kalman filter algorithm was first implemented in
[Ref. 3] on an Apple Macintosh Plus microcomputer. In [Ref. 4] the fixed-interval
smoothing algorithm was added, the new algorithm was named SHIPSM.FOR this al-
gorithm was adapted to run on an IBM PC. This research takes the program one step
further by adding new algorithms to detect maneuvers and to derive the state excitation
matrix @y. A new program SHIPMANE is used in the following manner for the simu-
lations.

The raw data required by the SHIPMANE.FOR is generated by RAWDATA.FOR.
This program is modified from the program TRACK.FOR used in [Ref. 3]. Our inten-
tion was to make the target follow a circular track during the maneuver period rather
than make a sharp turn. Program RAWDATA.FOR asks the user for the initial posi-
tions, speeds and courses of the target and the tracking ships, the total tracking time and
the observation interval. It also requests the desired maneuver period and any speed and
course changes of the target during this period. The outputs consist of noisy or noise
free bearings from each tracking ship to the target, the updated positions of all the ves-
sels and the time of the observation are stored in the file called TRKDATA.DAT.

The program SHIPMANE.FOR reads and processes the data stored in
TRKDATA.DAT. The outputs of this program are mainly stored in three files. The
first file FILDATA.DAT stores the results of the extended Kalman filter portion of the
program SHIPMANE.FOR while the fixed-interval smoothing results are included in
the second file SMDATA.DAT. The results of the maneuver detection algorithm are
stored in the third file MANEUDATA.DAT during the process of the extended Kalman

29




filter portion of the SHIPMANE.FOR. Additionally, a fourth file TRUDATA .DAT,
is created for graphic purposes, ;cmd consists of the actual positions (tracks) of the target.
Although this file is useful for the purposes of this thesis, in real world tracking problem
this information would seldom, if ever, be available. In this thesis the terms “real” or
“actual”, when applied to tracks or maneuvers, refer to the data Acontained in this file.,
“Assumed” tracks or maneuvers refer to what is detected by the extended Kalman filter
or the smoothing routine.

The MATLAB graphic routines are used to obtain the graphical representations of
the data included in the output files of the SHIPMANE.FOR. Five graphic outputs are
obtained for each simulaticn case except for the third case, which has only two. For all
cases except the third, the first graph is a geographic plot which show extended Kalman
filtered track versus the the actual and observed target tracks. The second graph com-
pares the track resulting from the fixed-interval smoothing with the actual and observed
target tracks. The third graph is the time plot showing the filtered, smoothed and ob-
served position errors. The fourth is also a time plot and shows the residuals for each
observation along with the threshold values of the upper and lower maneuver detection
gates. In the third simulation case, only this graph is included. The fifth graph gives the
overall resuits for each case. Due to the limited number of variables which can be used
in the single MATLAB graphic package, the true track of the target was shown as a line
without each observation point being shown.

Although both of the programs SHIPMANE.FOR and RAWDATA.FOR can eas-
ily be modified for multi-bearing measurements, the simulation cases used only two
bearings per observation as measurements, one from each tracking ship. The set of the

simulations studied in this chapter consists of following cases:
e Case #1: 60° maneuver toward tracking ships, with noiseless measurements.

¢ Case #2: 60° maneuver away from tracking ships, with noiseless measurements.
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e Case #3: Test for the maneuver detection algorithm. (1) Case #1 with different
maneuver period. (2) Case #2 with different maneuver period.

e Case #4: 60° maneuver toward tracking ships, with noisy measurements.
¢ Case #5: 120° maneuver toward tracking ships, with noisy measurements.
e (Case #6: 60°maneuver away from tracking ships, with noisy measurements.

¢ Case #7: 120° maneuver away from tracking ships, with noisy measurements.

In all cases, the target ship starts at the position (-75,150). The initial course of the
target is 090° and the initial speed of the target is 15 knots for each case. The speed of
the target is held constant throughout the simulation cases. The initial positions of the
tracking ships are (-40,0) and (-60,0), and courses and speeds are 030° and 10 knots for
each case. The speeds and courses of the tracking ships are also held constant. The
observation period is 30 minutes and all cases run for 450 minutes.

The success of the algorithm can be expressed by the percentage improvement be-
tween the total error in observed positions and the total errors in the filtered estimates
and smoothed estimates, respectively. This percentage indicates of how much the ex-
tended Kalman filtering and the fixed-interval smoothing improve the position accuracy
over the observations. For the extended Kalman filter, this percentage is simply the ra-
tio between the the total error in the observed positions and the total error in the filtered
estimates throughout the simulation case or time period of interest. In some cases this
was recalculated specifically for maneuver periods. The percentage improvement due to
the smoothing was similarly the ratio between the total error in the observed position
estimates and the total error in the smoothed position estimates. Also, the average po-
sition errors due to the extended Kalman filter and the fixed-interval smoothing algo-
rithm are given for the different cases. The average position error due to the extended
Kalman filter is calculated by summing the position errors of the filtered position esti-
mates and then dividing by the total number of observations. The average position error

due to the smoothing routine is also found by summing the position errors of smoothed
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estimates over the entire simulation (or in some cases, over the number of observations
of interest) and dividing by the number of observations. The average position errors
show how well the extended Kalman filter and fixed-interval smoothing algorithm work

for a particular simulation case.

32




B. CASE #1

The target is steaming due east at 15 knots at the beginning of this case. Between
time equals 150 minutes and and time equals 300 minutes, it makes a 60° course change
toward the advancing tracking ships on a circular track. The results for the filtering and
smoothing are shown in Figure 8 and Figure 9. Since there is no noise in the meas-
urements, the observed track equals the true track. Although the measurements are not
noisy, the filter estimates diverge very slightly for the first several observations. This
initial error, shown in Figure 10, is due to the inaccuracy of the initial state estimates.
This inaccuracy also causes the high values for the upper and lower maneuver gates for
the first few observations, as can be seen in Figure 11. When the target starts its turn
at time equals 150, the tracking error begins to increase. It decreases, however, as the
filter regains the target track and it reaches zero one observation after the target finishes
its maneuver.

The fixed-interval smoothing algorithm improves the position accuracy over the ex-
tended Kalman filter by an average of 35% during the real maneuver period, between
time equals 150 and equals 300 minutes, and 22% during the overall simulation.

As can be seen in Figure 11, the residuals appear between the upper and lower
maneuver gates for time equals 240,270 and 300. Since two consecutive residuals be-
tween the upper and lower gate values are necessary for the maneuver to be detected,
the extended Kalman filter recognizes times 270 and 300 as a maneuver period. Time
240 is ignored by the Kalman filter. The smoothing algorithm, however, does not ignore
time 240, since it knows that if the maneuver was detected at time 270, it must have
begun at time 240. Therefore, the maneuver period for the fixed-interval smoothing al-
gorithm is taken as times 240, 270 and 300. The overall results of this case can be seen

in Figure 12.
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C. CASE#2

In this case, the target makes a 60° maneuver away from the two tracking ships.
The target’s initial course is 090° at 15 knots. Between times 150 and 300, it turns
northeast to a new course , 030°, on a circular track. Again, the observed and true
tracks are the same due to the lack of measurement noise. T results of filtering are in
Figure 13 and the results of the smoothing routine are in Figure 14. The initial error
in Figure 15 and the high maneuver gate values for the first few observations in
Figure 16 are again due to the error in the initial estimates.

The filter error starts to increase when the target begins to maneuver at time 150.
When the target completes its maneuver, the error approaches zero. Since the target
starts to pull away from the tracking ships, the filter error reaches zero later than it did
in the previous case. From Figure 15, we can see how the fixed-interval smoothing
routine improves the filter’s estimate. The smoothing algorithm decreases the position
error of the extended Kalman filter by an average of 22% for the overall case and by an
average of 38% for the real maneuver period between 150 and 300 minutes.

From Figure 16, the residuals at times 240, 270 and 300 are in the maneuver zone.
The maneuver period is detected for times 270 and 300 for the extended Kalman filter
and for times 240, 270 and 300 for the smoothing filter. The final results of this case are
in Figure 17.
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D. CASE#3
In this case, the two previous cases are tried with different maneuver periods in order
to test the performance of the maneuver detection algorithm. Therefore only the figures
which show the results of the maneuver detection algorithm are included.
1. Case #1 With Different Maneuver Period
In this part of the case, Case #1 is again tried with the new maneuver period
from time 270 to time 390. From Figure 18, it can be seen that the residuals at times
300, 330, 360 and 390 are between the upper and lower gates. The maneuver period is
between 330 and 390 minutes for the extended Kaiman filter algorithm and between
times 300 and 390 for the fixed-interval smoothing algorithm.
2. Case #2 With Different Maneuver Period
In this part, Case #2 with a new maneuver period, this time between 90 and 270
minutes, is simulated. In Figure 19, the residuals are in the maneuver detection zone
at 180, 210, 240 and 270 minutes. In the extended Kalman filter routine, the maneuver
detection algorithm detects the maneuver at 210, 240 and 270 minutes. For the fixed-
interval smoothing algorithm, the maneuver period begins at time 180 and ends after

time 270.
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E. CASE #4

This case is the same as Case #1 except noise is added to the measurements. The
filtering and smoothing results for this case are shown in Figure 20 and Figure 21. At
the beginning of the tracking problem, the error is high. However, after the target ma-
neuvers, the vessels close each other and the position error decreases rapidly.

From Figure 23, it is seen that the residuals are between the maneuver gates at
times 180 through 330. The maneuver period for the extended Kalman filter is from 210
to 330 minutes. During this period the improvement in position error due to the Kalman
filter is 32%. The maneuver period for the smoothing filter is between times 180 and
330, and the position error improvement due to the smoothing filter is 78%.

It is also seen that the maneuver detection algorithm recognizes a bad observation
at time 60. As Figure 20 shows, the extended Kalman filter estimates for this point
appear to be only the projections of the previous estimates in time. Therefore the posi-
tion error of the extended Kalman filter for this point is 145% worse than the observed
position error, while the smoothed position error is only 4% worse. The average posi-
tion error is 3.8 Nm for the extended Kalman filter and 2.5 Nm for the smoothing filter

over the entire tracking period. The overall results for this case are in Figure 24.
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F. CASE#5

This case includes a 120° turn which, if undetected, will cause an unacceptably high
error. The target turns to a new course of 210° by following a circular track between
times 150 and 300. Again, the observed position error decreases rapidly after the target
completes its maneuver, since all the vessels start to close each other. The extended
Kalman-filtered and smoothed results can be seen in Figure 25 and Figure 26.

The observed, filtered and smoothed position errors are shown in Figure 27. The
extended Kalman filter improves the position accuracy by 46% over the observed posi-
tion errors for the entire tracking period, and the improvement due to smoothing is 73%
over the same period. The maximum filtered position error is around 6 Nm except at
time zero, while the average filtered error is 3 Nm. The maximum smoothed position
error is 4 Nm and the average smoothed position error is 1.5 Nm.

The maneuver period for the extended Kalman filter is from 180 through 330 min-
utes, during which the improvement due to the extended Kalman filter is 46%. The
maneuver period for the fixed-interval smoothing is between times 150 and 330, and the
position accuracy is 55% over the observed position errors for the maneuver period
alone. The observation at time equals 120 is recognized as a bad observation. The

overall results are in Figure 29.
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Figure 28. The Results of the Maneuver Detection Algorithm for Case #5
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The Overall Results for Case #5
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G. CASE #6

This case is the same as Case #2, with the addition of noise to the measurements.
The results of the extended Kalman filtering and smoothing are in Figure 30 and
Figure 31. i

From Figure 32, the maximum Kalman filter position error is 8 Nm at time equals
30 while the average filtered position is 3.3 Nm. The maximum errors are 3.5 Nm at
time 420 and 6.5 Nm at time 450, which the filtered and smoothed errors had to be same,
and the average error is 2.1 Nm for the smoothed errors. This case shows the general
improvement in the filtered and smoothed estimates. The position accuracy increases
by 47% with the extended Kalman filter and by 65% with the fixed-interval smoothing
filter.

As seen in Figure 33, the residual values are in the maneuver zone at times 60, 180,
210, 240, 270 and 330 minutes. No maneuver detection occurs at times 60 and 330, since
the residuals immediately following these times are out of the maneuver zone. The ma-
neuver periods are detected from 210 to 270 minutes for the extended Kalman filter and
from 180 to 270 minutes for the smoothing filter. The improvement in the accuracy of
the position estimates is 49% due to the extended Kalman filter and 60% due to the
smoothing filter.

Figure 33 also shows that the maneuver detection algorithm recognizes the obser-
vations at times 120, 300 and 420 as bad observations. As can be seen from Figure 30,
the filtered positions are the projections of theh previous estimates in time with no noise
adaptation being made. For each of these times the filtered estimates are more accurate
than the observed estimates and the smoothed estimates are the most accurate of all.
The average improvement in the position estimate for these three observations is 56%
for the extended Kalman filter and 83% for the smoothing filter. Figure 34 shows the

overall tracking and smoothing results for this case.
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H. CASE#7

This case depicts a 120° target maneuver away from the tracking ships. The filtered
and smoothed tracks are in Figure 35 and Figure 36.

The observed, filtered and smoothed position errors are in Figure 37. The accuracy
of the position estimates is increased by 47% with the extended Kalman filter and by
65% with the fixed-interval smoothing throughout the entire tracking period. The av-
erage position error due to the Kalman filter is 5.4 Nm while the average position error
of the smoothed estimates is 2.3 Nm. The smoothed error is always less than § Nm with
the exception of the last observation time (i.e. time 450) where the error is 5.4 Nm.

From Figure 38, the maneuver period is detected as times 180, 210, 240 and 270 for
the extended Kalman filter and as times 150, 180, 210, 240 and 270 for the smoothing
algorithm. During these periods, the accuracy in the position estimates is improved by
42% with the Kalman filter and by 72% with the smoothing. The observations of times
90 and 300 are recognized as bad observations. The Kalman filter improves the position
accuracy by an average of 68% and the average improvement due to the smoothing
routine is 90% for these two points. The overall results for this case are shown in

Figure 39.
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Figure 35. The Results of the Kalman Filter Tracking for Case #7
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The Results of the Fixed-Interval Smoothing for Case #7
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V1. CONCLUSIONS

We have tried to improve the accuracy of the extended Kalman filter with a fixed-
interval smoothing routine by implementing a new maneuver detection algorithm.
Whereas maneuver detection algorithms are normally applied only to the extended
Kalman filter, we apply this algorithm both to the extended Kalman filter and to the
fixed-interval routine to adapt them both to unpredicted maneuvers of the target. We
studied the effects of varying the state excitation matrix Q, in the fixed-interval
smoothing during the assumed maneuver periods. Several simulation cases were run and
analyzed in order to test the performance of the algorithm.

Although some maneuver points were missed, the maneuver detection algorithm
worked well during the simulations. The probabilities of a maneuver being detected for
noise free and noisy cases are shown in Table 1 and Table 2. In order to obtain these
probabilities a large number of simulations (i.e. 10) for both noise free and noisy cases
were run on the IBM PC. Due to space constraints, just four representative runs each
were presented in the previous chapter.. However, in Table 1 and Table 2 the results
of all ten runs are shown for the fixed-interval smoothing routine only. To get the
probabilities of a maneuver being detected in the extended Kalman filter, the reader must
shift the numbers in both tables one cell right. In both Table 1 and Table 2, the ma-
neuver was executed at N equal zero.

With a new maneuver detection technique, the fixed-interval smoothing routine im-
proved the accuracy of the target’s position estimates in all the simulation cases. This
improvement was 35-/5% over the observed target positions and over 35-55% over the
Kalman filter’s estimates. Applying the new maneuver detection technique also im-

proved the accuracy of the extended Kalman filter by 45-50% over the entire time in-
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Table 1. Probabilities of a Maneuver Being Detected at Point N in a Noise Free
Enviroinment for Fixed-Interval Smoothing Algorithm (Maneuver Executed

at N=0)
N=0 N=1 N=2 N=3 N=4 N=5
0% 0% 25% 75% 100% 100%

Table 2. Probabilities of a Maneuver Being Detected at Point N in a Noisy
Enviroinment for a Fixed-Interval Smoothing Algorithm (Maneuver Exe-
cuted at N=0)

N=0 N=1 N=2 N=3

20% 30% 100% 100%

terval. Where the accuracy was most improved by this technique during the maneuver
periods: here the accuracy increased by 30-60% using the extended Kalman filter and
60-80% using the the fixed-interval smoothing algorithm over the observed positions
during the actual maneuver periods. And during the maneuver periods the smoothed
estimates were 30-70% more accurate than the Kalman filter’s estimates.

These significant improvements were obtained, in part, by using the time-varying
values of the state excitation matrix Q,. However, there is a disadvantage to this tech-
nique. Since this matrix is added to the predicted error covariance matrix Py, high
values of the matrix Q, will cause the predicted error covariance matrix to grow
boundlessly which will make the filter become unstable. Also, increasing the magnitude

of the state excitation matrix in the fixed-interval smoothing algorithm makes the
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smoothing filter estimates diverge to the extended Kalman filter estimates. This in-
creases the need for a more accurate extended Kalman filter, since the accuracy of the
smoothed estimates in this case depends to a large degree on the extended Kalman fil-
ter’s estimates.

There are at least two areas which can be investigated to develop the tracking algo-
rithm more fully. The first is research in new noise models. The model used was a white
noise process. Although this model is relatively adequate for representing atmospheric
noise over an extended time period, better models could be used which take into account
random noise spikes, the lightning effects, of the atmospheric noise process. The second
area is adapting the algorithm for multi-target tracking. Improving the ability of the
algorithm to track and identify two or more targets would have great value in ship

tracking and targeting problems.
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APPENDIX A. THE EXTENDED KALMAN FILTER WITH FIXED

INTERVAL SMOOTHING ALGORITHM

C *¥% SHIPMANE.FQR *¥¥*
CHrrririrninrinintieidodrrlrivinieieooioeminoionioooedrinielaoioiioodolniookdododiokdriokdeiedokk
C*

C* THIS A EXTENDED KALMAN FILTER TRACKING ROUTINE WITH THE FIXED
C* INTERVAL SMOOTHING ALGORITHM. THIS PROGRAM USES BEARINGS TAKEN
C* FROM TWO SENSOR SHIPS TO THE TARGET. A NEW MANEUVER DETECTION

C* ROUTINE IS IMPLEMENTED. THE NEW ALGORITHM TO DERIVE THE STATE

C* EXCITATION MATRIX Q IS ALSO DEVELOPED. TO RUN THE PROGRAM:

%*

%*

%*

%*

%*

%

%*
C* 1) RUN THE PROGRAM <RAWDATA.FOR> LOCATED IN APPENDIX B TO %*
C* PRODUCE THE RAW DATA. *
C#* %*
C* 2) RUN THE <SHIPMANE.FOR> *
Cc* %*
C* THE OUTPUTS OF THE PROGRAM STORED IN THE FOLLOWING FILES: *
C* %*
C¥* 1) THRDATA = INCLUDES THE THERESHOLD VALUES OF THE *
C* MANEUVER GATES AND RESIDUAL CALCULATED *
C* FOR EACH OBSERVATION. ¥*
C* *
c* 2) CIRCDATA = INCLUDES THE REQUIRED DATA TO DRAW THE *
C* MANEUVER GATES AS A CONCENTRIC CIRCLES *
C* AROUND THE PREDICTED FILTER ESTIMATES. *
Ci %*
C* 3) BEGINDATA = INCLUDES THE FIRST PQINTS, IGNORED BY ¥
C* THE EXTENDED KALMAN FILTER, OF THE TARGET *
C* MANEUVERS TO BE USED BY THE FIXED-INTERVAL *
C* SMOOTHING ALGORITHM. %*
c* %
C* 4) MANEUDATA = INCLUDES THE DETECTED MANEUVER POINTS. *
C* %*
C* 5) TRUDATA = INCLUDES THE ACTUAL POSITION OF THE TARGET *
C* FOR EACH OBSERVATION TIME. *
C* *
C* 6) FILDATA = INCLUDES THE EXTENDED KALMAN FILTER'S POSITION *
C* ESTIMATES ALONG WITH THE OBSERVED POSITIONS, *
Cc* KALMAN FILTER ERROR AND OBSERVATION ERROR. %*
C¥ *
C* 7) SMDATA = INCLUDES THE SMOOTHED POSITION ESTIMATES AND *
Cc* SMOOTHING ERROR. *
Ce %
C* TO GET THE GRAPHIC RESULTS: *
C* %*
C* 1) COPY THE FILES TRUDATA, FILDATA, SMDATA AND MANEUDATA INTO *
C* THE MATLAB SUB-DIR. *
C* *
C* 2) RUN THE PROGRAM <SHIPTR.M> IN THE MATLAB SUB-DIR. THE *
C* GRAPHIC RESULTS WILL BE STORED IN THE META FILE SHIPTR.MET. *

Cededricicicioiciehedoirioiriciairivhedeiedeidoinicioirivioirivicinlcivicinioioiricoinnioiorinoninritrdoinoinniofddrrint
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***YARIABLE DEFINITIONS#¥%*

RANGE

RTGD
SHDG
SPD
SPKRM1
SSPD
SXPOS
SYPOS
TEMP

SMOOTHING FILTER GAIN MATRIX
TRANSPOSE OF AK
BAD OBSERVATION INDICATOR
BAD OBSERVATION COUNTER WHICH PROVIDES
THAT ONLY THE FIRST OF TWO CONCECUTIVE
BAD OBSERVATIONS WILL BE RECOGNIZED
MEASURED TARGET BEARING IN RADIANS
PREDICTED TARGET BEARING MEASUREMENT
IN RADIANS, BRG(K/K-1)
MEASURED TARGET BEARING IN DEGREES
TIME DELAY BETWEEN OBSERVATIONS,

T(K) - T(K1)
DEGREE TO RADIAN CONVERSION FACTOR
RECIPROCAL OF VARE
KALMAN GAIN VECTOR
MEASUREMENT MATRIX
TARGET HEADING IN DEGREES BY KALMAN FILTER
TRANSPOSE OF ¥
COUNTER
& X & IDENTITY MATRIX
COUNTER
ITERATION INTERVAL
POSITION DIFFERENCE BETWEEN OBSERVED AND
PREDICTED STATE ESTIMATES

| Z(K) - X(K/K-1) |
DISCRETE-TIME STATE TRANSITION MATRIX
TRANSPOSE OF PHI
ESTIMATION ERROR COVARIANCE MATRIX, P(K/K)
SMOOTHED ERROR COVARIANCE MATRIX
PREDICTED ESTIMATION ERROR COVARIANCE
MATRIX, P(K+1/K)
PREDICTED ERROR COVARIANCE MATRIX FOR
SMOOTHING, P(K+1/K)
INVERSE OF PKKM1S
ERROR COVARIANCE MATRIX FOR SMOOTHING, P(K/K)
POSITION DIFFERENCE IN X DIRECTION BETWEEN
OBSERVED AND PREDICTED STATE ESTIMATES

| ZX - X(K/K-1)(1,1) |
POSITION DIFFERENCE IN Y DIRECTION BETWEEN
OBSERVED AND PREDICTED STATE ESTIMATES

| ZY - X(K/K-1)(3,1) |
STATE EXCITATION MATRIX
MEASUREMENT NOISE COVARIANCE
DISTANCE FROM SENSOR TO A PRIORI TARGET
POSITION -
RADIAN TO DEGREE CONVERSION FACTOR
TARGET HEADING IN DEGREES BY SMOOTHING
TARGET SPEED IN KNOTS BY KALMAN FILTER
STORE THE INITIAL ERROR COVARIANCE, P(0/-~1)
TARGET SPEED IN KNOTS BY SMOOTHING
SMOOTHED TARGET POSITION IN X DIRECTION
SMOOTHED TARGET POSITION IN Y DIRECTION
TEMPORARY STORAGE MATRICES USED IN MATRIX
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c OPERATIONS

c TIMEX = IMPOSSIBLY HIGH CONSTANT FOR DETERMINING THE

c FIRST POINT OF THE MANEUVER WHICH IS IGNORED

c BY THE KALMAN FILTER AND ACCOUNT BY THE SMOOTHING
c FILTER

c TIMEXLO = VARIABLE FOR STORING THE MANEUVER POINTS

c TL = THRESHOLD VALUE FOR THE LOWER MANEUVER GATE

C TLS = VECTOR VARIABLE FOR STORING THE THRESHOLD

C VALUES OF THE LOWER MANEUVER GATE

c TU = THRESHOLD VALUE FOR THE UPPER MANEUVER GATE

c TUS = VECTOR VARIABLE FOR STORING THE THRESHOLD

c : VALUES OF THE UPPER MANEUVER GATE

c VARE = VARIANCE OF RESIDUALS PROCESS

c XDIFF = DISTANCE IN X DIRECTION FROM SENSOR TO A

c PRIORI TARGET POSITION

c XKK = ESTIMATED TARGET STATE VECTOR, X(K/K)

c XKKS = SMOOTHED TARGET STATE VECTOR

c XKKM1 = PREDICTED TARGET STATE VECTOR, X(K/K-1)

c XKKM1S = PREDICTED TARGET STATE VECTOR FOR SMOOTHING, X(K+1/E
c XPOS = KALMAN FILTERED TARGET POSITION IN X DIRECTION
c XS = SENSOR POSITION IN X DIRECTION

c XSS = TARGET STATE VECTOR FOR SMOOTHING, X(K/K)

c XT = TRUE TARGET POSITION IN X DIRECTION

C YDIFF = DISTANCE IN Y DIRECTION FROM SENSOR TO A

c PTIORI POSITION

c YPOS = KALMAN FILTERED TARGET POSITION IN = DIRECTION
C YS = SENSOR POSITION IN Y DIRECTION

c YT = TRUE TARGET POSITION IN Y DIRECTION

C zX = OBSERVED POSITION IN X DIRECTION

C Y = OBSERVED POSITION IN Y DIRECTICN

C % VARIABLE DECLARATIONS *¥¥

REAL*4 XKK(4,1),XKKM1(4,1),PHI(4,4),SXPOS,SYPOS,HDG,PDIFF
REAL*4 H(1,4),G(4,1),TEMP1(1,4),TEMP2(1,1),TEMP3(4,1),2T
REAL*4 TEMP4(4,4),TEMPS(4,4),PKK(4,4) ,PRKM1(4,4) HT(4,1)
REAL*4 LXKK(4,1),LPKK(4,4),XS(10),¥S(10),DBRG(10),BRG(10)
REAL*4 TEMP6(4,4),PHIT(4,4),IMAT(4,4) ,XT,YT,SHDG,XPL(100)
REAL*4 VARE(2),E(2),611,G13,621,G23,Q(4,4),SSPD(100),MC
REAL*4 DT,XDIFF,YDIFF,RANGE,XS1,YS1,BRG1,BRKKMI,YPL(100)
REAL*4 OBSERR(200),FAC1,SIGTHT,SIGVT,R,RTOD,SPD(100),BD
REAL*4 XS2,YS2,BRG2,ZX,ZY,DTOR,TRKERR(100),TL,TU,SX,SY
REAL*4 XNNM1(4,1),XSS(4,1),XKKM1S(4,1),THETA,PY,PX,PD
REAL*4 PNNM1(4,4),PSS(4,4),PKKM1S(4,4,100), IPKKM1S(4,4)
REAL*4 AK(4,4),AKT(4,4),STRKERR(100),DTS(100),SPKKM1(4,4)
REAL*4 TEMP1S(4,4),TEMP2S(4,1),TEMP3S(4,1),TH1(4,1),YPOS
REAL*4 TEMP4S(4,4) ,TEMP5S(4,4) ,TEMP6S(4,4),TH2(4,4),XPOS
REAL*4 XKKS(4,1,100),PKKS(4,4,100),TLS(100),TUS(100),DR( 100)
REAL#*4 XPU(100),YPU(100),BOC

INTEGER*4 TIME,TIMEP(100),NP,TIMEX,TIMEXB(100),TIMEXLO( 100)
C *%% OPEN OUTPUT DATA FILES ¥+
OPEN(UNIT=2,FILE='TRKDATA. DAT' ,STATUS='0LD")

OPEN(UNIT=3,FILE='THRDATA. DAT' ,STATUS='NEW')
OPEN(UNIT=4,FILE='CIRCDATA. DAT' ,STATUS='NEW')
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OPEN(UNIT=6 ,FILE='MANEUDATA. DAT' , STATUS‘ NEW )

OPEN(UNIT=7,FILE='TRUDATA. DAT' STATUS='NEW' )

OPEN(UNIT=8,FILE='FILDATA. DAT STATUS' NEW ) .
OPEN(UNIT=9,FILE='SMDATA. DAT' STATUS’ NEW')

C *¥%* RADIAN/DEGREE CONVERSION FACTORS ¥¥¥*

RTOD=57. 29577951
DTOR=0.01745293

C **% COMPUTE 4X4 IDENTITY MATRIX ¥¥*

DO 5 I=1,4
DO 5 J=1, ot
IF (I.EQ.J) THEN
IMAT(I,J)=1.0 -
ELSE
IMAT(I,J)=0.0

5 CONTINUE

C *¥¢ INITIALIZE TIME AND MANEUVER DETECTION ALGORITHM COUNTERS *¥*
TIMEM1=0
NP=1
TIMEX=5000

BOC=0.0

C #¥¥% COMPUTE BEARING MEASUREMENT COVARIANCE #¥r¥
C BEARING ERROR STANDARD DEVIATION = 3 DEGREES

R=(3*DTOR)#**2
C Finleiciieioirieiieleioinioiroioiciciiceiiciicoiciioicooirioiccinicciocnicodoidcinicdeicivieicoeicieicoicico
C * THIS WHERE THE EXTENDED KALMAN FILTERING STARTS *
c ? %o
C *** READ IN OBSERVATION PACKET (TIME, # OF SENSQRS) ¥¥*
c DT=TIME(K)-TIME(K-1)

WRITE(*,*)'EXTENDED KALMAN FILTERING NOW STARTS'
P Rea S

WRITE(*,*)'
810 READ(2,1001,END=800)TIME ,XT,YT,XS(1),YS(1),DBRG(1),
* Xs(2),Ys(2),DBRG(2) -
1001 FORMAT(I4,8F9.4) .
BD=0.0 .
MC=0.0
DC 200 L=1,2

IF (DBRG(L).GT. 180.0) DBRG(L)=DBRG(L)-360
BRG(L)=DBRG(L)*DTOR
200 CONTINUE

IF (TIME.LT.0) GOTO 800
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DT=TIME-TIMEM1
DTS(NP)=DT

CALL FINDPHI(PHI,DT)

XS1=XS(1)
¥S51=YS(1)
X52=X5(2)
¥S52=YS5(2)
BRG1=BRG(1)
BRG2=BRG(2)

CALL MP(XS1,YS1,Xs2,YS2,BRG1,BRG2,ZX,Z2Y)

IF(TIME.EQ. 0) THEN
CALL INIT(XS1,YS1,XS2,YS2,BRG1,BRG2,XKK,PKK)
ENDIF

C #¥* PROJECT AHEAD STATE ESTIMATES ¥*¥*
c X(K+1/K) = PHI * X(K/K)

CALL MATMUL(PHI,XKK,4,4,1,XKKM1)
C #¥* DERIVATION OF THE Q MATRIX ¥¥*
CALL GETQ(DT,XKKM1,PKK(1,1),PKK(3,3),Q)

C #¥* PROJECT AHEAD ERROR COVARIANCE ESTIMATES **
c P(K+1/K) = (PHI * P(K/K) * PHIT) + Q

CALL MATRAN(PHI,PHIT,4,4)

CALL MATMUL(PHI,PKK,4,4,4,TEMP6)

CALL MATMUL(TEMP6,PHIT,4,4,4,TEMP4)
301 CALL MATADD(TEMP4,Q,4,4,1,PKKM1)

C %k

IF (TIME.EQ.O) THEN
DO 542 I=1,4
DO 542 J=1,4
PKKM1(I,J)=0.0
542 CONTINUE

PKKM1(1,1)=10000.0
PKKM1(3,3)=9999.9
PKKM1(2,2)=0. 25
PKKM1(4,4)=PRKM1(2,2)

DO 543 I=1,4
DO 543 J=1,4
SPKKM1(I,J)=PKKM1(I,J)
543 CONTINUE
ENDIF

IF (MC.EQ.1.0) GOTO 303
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C ¥ CALCULATE THE RESIDUAL DUE TO THE DIFFERENCE BETWEEN
c OBSERVED AND ESTIMATED POSITIONS e
c | Z(K) - X(K/K-1) |

PX=ZX-XKKM1(1,1)
PY=ZY-XKKM1(3,1)
PD=(PX**2)+(PY¥*¥*2)
PDIFF=SQRT(PD)

C *%% CALCULATE THE MANEUVER GATE THRESHOLD VALUES %%

CALL MANDET(TIME,PDIFF,XKKM1(1,1),XKKM1(3,1),PKKMI(1,1),
* PKKM1(3,3),PKKM1(1,3),XPL,YPL,XPU,YPU,TL,TU)
DO. 640 IE=1,37
WRITE(4,*)XPL(IE),YPL( IE) ,XPU(IE),YPU( IE)
640 CONTINUE

C **% STORE THE MANEUVER GATE VALUES AND RESIDUAL DUE TO THE
c POSITION DIFFERENCE #¥¥

TLS(NP)=TL
TUS(NP)=TU
DR(NP)=PDIFF

C ¥¥* MANEUVER DETECTION/DIVERGENCE ALGORITHM ¥¥*%

IF ((PDIFF.GE.TL).AND. (PDIFF.LE.TU)) THEN
WRITE(*,*)'MANEUVER POSSIBILITY'
MC=1.0
ZT=ZT+1
IF (2T.GE.2.0) THEN

IF (TIMEX.GT.TIME) THEN
TIMEX=TIME
TIMEXB(NP)=TIME
TIMEXLO(NP)=TIMEXB(NP)-( 1*DTS(NP))
WRITE(5,1042)TIMEXB(NP) ,TIMEXLO(NP)
1042 FORMAT(2I4)
ENDIF
CALL MATSCL(2.0,Q,4,4,Q)
TIMEP(NP)=TIME
WRITE(6,1048)TIMEP(NP)
1048 FORMAT(14)
GOTO 301
ENDIF

ELSE
ZT=0.0
TIMEX=5000

ENDIF

C #%* RECOGNAZITION OF THE BAD OBSERVATIONS #¥*
IF (PDIFF.GE.TU) THEN
IF (BOC. NE. 1. 0)THEN

BD=1.0
BOC=1.0
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ELSE
BOC=0.0
ENDIF
ELSE
B0C=0.0
ENDIF

303 MC=0.0

C vk

IF (TIME.EQ.0.0) THEN
DO 544 I=1,4
DO 544 J=1,4
PKKM1(I,J)=SPKKM1(I,J)
544 CONTINUE
ENDIF

204 CONTINUE
DO 210 L=1,2
C #¥% CALCULATE RANGE TO TARGET ##¥

XDIFF=XKKM1(1,1)-XS(L)
YDIFF=XKKM1(3,1)-YS(L)
RANGE=SQRT(XDIFF**2+YDIFF**2)

C ¥*** UPDATE H MATRIX WITH LATEST STATE ESTIMATES ¥¥¥
c AND CALCULATE MEASUREMENT ERROR ¥

H(1,1)=YDIFF/RANGE**2
H(1,2)=0.0
H(1,3)=-XDIFF/RANGE**2
H(1,4)=0.0

BRKKM1=ATAN2(XDIFF,YDIFF)
E(L)=BRG(L)~BRKKM1

C *%* COMPUTE KALMAN GAIN MATRIX ¥¥*
c G=PKKM1*HT*( H*PKKM1*HT+R)*¥*(-1)

CALL MATRAN(H,HT,1,4)

CALL MATMUL(H,PKKM1,1,4,4,TEMP1)
CALL MATMUL(TEMP1,HT,1,4,1,TEMP2)
VARE(L)=TEMP2(1,1)+R
FAC1=1/VARE(L)

CALL MATMUL(PKKM1,HT,%,4,1,TEMP3)
CALL MATSCL(FAC1,TEMP3,4,1,G)

C #¥* COMPANSATION OF THE BAD OBSERVATIONS ##*

IF (BD.EQ.1.0) THEN
DO 730 I=1,4
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G(I,1)=0.0
730 CONTINUE
ENDIF

C %¥k

IF (L.EQ.1) THEN

G11=G(1,1)
G13=G(3,1)

ELSE
G21=G(1,1)
G23=G(3,1)

ENDIF

C ¥*¥** COMPUTE UPDATED ESTIMATE ¥¥*
C X(K/K) = X(X/K-1) + G * E, WHERE E = Z(K) - H(K)*X(K/K-1)

XKK(1,1)=XKKM1(1,1)+(G(1,1)*E(L))
XKK(2,1)=XKKM1(2,1)+(G(2,1)*E(L))
XKK(3,1)=XKKM1(3,1)+(G(3,1)*E(L))
XKK(4,1)=XKKM1(4,1)+(G(4,1)*E(L))

C #*% COMPUTE UPDATED ERROR COVARIANCE MATRIX #¥*
c P(K/K) = (I - G*H) * P(K/K-1)

CALL MATMUL(G,H,4,1,4,TEMP4)
CALL MATSUB( IMAT,TEMP4,4,4,TEMPS)
CALL MATMUL(TEMPS,PKKM1,4,4,4,PKK)

C #*% IF MORE MEASUREMENTS ,*¥¥*
IF (L.LT.2) THEN

C #*¥%% USE UPDATED STATE AND ERROR COVARIANCE ESTIMATES FOR NEXT
c MEASUREMENT ¥

DO 150 I=1,4
DO 150 J=1,4
PKKM1(I,J)=PKK(I,J)
XKKM1(I,1)=XKK(I,1)
150 CONTINUE

210 CONTINUE

C #*% THESE STATEMENTS ARE FOR THE SMOOTHING ALGORITHM *¥*

DO 620 I=1,4
XKKS(I,1,NP)=XKK(I,1)
620 CONTINUE

DO 630 I=1,4
DO 630 J=1,4
PKKS(I,J,NP)=PKK(I,J)
630 CONTINUE
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C % COMPUTE TRUE TRACKING AND OBSERVATION ERRORS #¥*

. TRKERR(NP)=SQRT( (XT-XKK(1,1))**2+(YT-XKK(3,1))**2)
OBSERR(NP)=SQRT( (XT=-2X)¥**2+(YT-ZY)*¥*2)

C ¥¥* COMPUTE ESTIMATED X-Y POSITION, COURSE, AND SPEED *¥*

1011

¥
1012

XPOS=XKK(1,1)
YPOS=XKK(3,1)
IF (XKK(2,1).EQ.0 .AND. XKK(4,1).EQ.0) THEN
HDG=0. 0
ELSE
HDG=RTOD*ATAN2(XKK(2,1),XKK(4,1))
ENDIF
IF (HDG.LT.O0.0) HDG=HDG+360
SPD(NP)=60*SQRT(XKK(2,1)#**2+XKK(4,1)**2)

WRITE(7,1011)TIME,XT,YT

FORMAT(I4,2F15.4)

WRITE(8,1012)TIME,NP,XP0OS,YPOS,2X,2Y,TRKERR(NP) ,0BSERR(NP) ,
PKK(1,1)

FORMAT(214,7F15.4)

C ¥ UPDATE DATA COUNTER ¥

800

NP=NP+1
TIMEM1=TIME

GOTO 810
NP=NP-1

Ciedefeddesdeididioiriickddrichikiciriciokdnivdrickiciridoiohfdokici ik hidnniithriritrintiotiot

C* THIS IS WHERE THE FIXED-INTERVAL SMOOTHING ALGORITHM STARTS *
e L L L L S e

901

WRITE(*,*)' FIXED-INTERVAL SMOOTHING NOW STARTS'

WRITE(*,%) ' Fit——————————————————————————iricc
DO 3000 KK=1,NP-1

K=NP-KK

DT=DTS(K+1)

TIME=TIMEM1-DT
CALL FINDPHI(PHI,DT)

DO 901 I=1,4
XSS(1,1)=XKKS(I,1,K)
CONTINUE

DO 902 I=1,4
DO 902 J=1,4
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PSS(I,J)=PKKS(I,J,K)
902 CONTINUE

C ***% CALCULATE THE PREDICTED STATE ESTIMATES #¥*
c X(K+1/K)=PHI*X(K/K)

CALL MATMUL (PHI,XSS,4,4,1,XKKM1S)
C #¥%% DERIVATION OF THE Q MATRIX ¥¥¥
CALL GETQ(DT,XKKM1S,Pss(1,1),PSS(3,3),Q)

C #¥*% CALCULATION OF THE PREDICTED ERROR COVARIANCE MATRIX

c AND COMPANSATION ALGORITHM WHICH USES THE MANEUVER

c PERIOD DETECTED IN THE EXTENDED KALMAN FILTER ROUTINE #¥¥*
c P(K+1/K)=PHI*P(K/K)*PHIT+Q

CALL MATRAN (PHI,PHIT,4,4)
CALL MATMUL(PHI,PSS,4,4,4,TEMP6)
CALL MATMUL(TEMP6,PHIT,4,4,4,TEMP4)

IF (TIME.EQ. TIMEP(K)) THEN
IF (TIME.EQ.TIMEP(1)) GOTO 483
CALL MATSCL(2.0,Q,4,4,Q)

ELSE
305 READ(6,1051,END=482)TIMEM, TIMEL
1051 FORMAT(214)

IF (TIME.EQ.TIMEL) THEN
CALL MATSCL(2.0,Q,4,4,Q)

ENDIF
GOTO 303
ENDIF
482 REWIND 6
483 CALL MATADD(TEMP4,Q,4,4,1,PKKM1S)

C *¥* CALCULATE THE SMOOTHING FILTER GAIN MATRIX *¥+*
c =P(K/K)*PHIT*INV°P(K+1/K)

CALL MATINV (PKKM1S,4,IPKKM1S)
CALL MATMUL (PHIT,IPKKM1S,4,4,4,TEMP1S)
CALL MATMUL (PSS,TEMP1S,4,4,4,4K)

DO 904 I=1,4
XNNM1(I,1)=XKKS(I,1,K+1)
904 CONTINUE

C #*¥*% CALCULATE THE SMOOTHED STATE ESTIMATE ¥¥**
c XKKS=X(K/K)+AK*(X(K+1/N)-X(K+1/K)
CALL MATSUB (XNNM1,XKKM1S,4,1,TEMP2S)
CALL MATMUL (AK,TEMP2S,4,4,1,TEMP3S)
CALL MATADD (XSs,TEMP3S,4,1,1,TH1)

DO 903 I=1,4
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XKKS(I,1,K)=TH1(I,1)

903 CONTINUE
DO 906 I=1,4
DO 906 J=1,4
PNNM1(1,J)=PKKS(I,J,K+1)
906 CONTINUE

C *¥% CALCULATE THE SMOOTHED COVARIANCE MATRIX *¥*
c PKKS=P(K/K)+AK*|P(K+1/N)-P(K+1/K) | *AKT

CALL MATSUB (PNNM1,PKKMIS,&,4,TEMP4S)
CALL MATRAN (AK,AKT,&,4)

CALL MATMUL (AK,TEMP4S,%4,4,4,TEMPSS)
CALL MATMUL (TEMPSS,AKT,&,&4,4,TEMP6S)
CALL MATADD (PSS,TEMP6S,4,4,1,TH2)

DO 908 I=1,4
DO 908 J=1,4
PKKS(I,J,K)=TH2(I,J)
908 CONTINUE

C “*¥* COMPUTE ESTIMATED X-Y POSITION, COURSE, AND SPEED *¥*

IF (XKKS(2,1,K).EQ.0 .AND. XKKS(4,1,K).EQ.0) THEN
SHDG=0. 0
ELSE
SHDG=RTQD*ATAN2(XKKs(2,1,K),XKKS(4,1,K))
ENDIF
IF (SHDG.LT.0.0) SHDG=SHDG+360
SSPD(K)=60*SQRT(XKKS(2, ,K)**2+XKKS(4,1,K)**2)

TIMEM1=TIME
3000  CONTINUE
REWIND &
C ##% CALCULATE THE SMOOTHED TRACKING ERROR ¥
DO 1100 K=1,NP
SXPOS=XKKS(1,1,K)
SYPOS=XKKS(3,1,K)
READ(4,1110)TIME,XT,¥T
STRKERR(K)=SQRT( (XT-XKKS(1,1,K))**2+( YT-XKKS(3,1,K))**2)
WRITE(9,1120)K,SXPOS,SYPOS, STRKERR(K) , PKKS(1,1,K)
1100  CONTINUE
1110  FORMAT(I4,2F15.4)
1120  FORMAT(I4,4F20.4)

CLOSE(UNIT=2)
CLOSE(UNIT=3)
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CLOSE(UNIT=4)
CLOSE(UNIT=5)
CLOSE(UNIT=6)
CLOSE(UNIT=7)
CLOSE(UNIT=8)
CLOSE(UNIT=9)

WRITE(*,%)'THERE WERE',NP,' OBSERVATIONS PROCESSED.'
WRITE(*,*)'FOR GRAPHIC RESULTS COPY'

WRITE(*,%)' 1) FILDATA.DAT'

WRITE(*,*)' 2) MANEUDATA. DAT'

WRITE(*,*)' 3) SMDATA.DAT'

WRITE(*,*)' 4) TRUDATA.DAT'

WRITE(*,*)'TO THE MATLAB SUB-DIRECTORY AND RUN ==> <SHIPTR.M>'
STOP

END

CFevkfdrtdefredininkintirith it bbb bbbk dkbrinthhbbrtnrnbdntobntinnernttet

Cx* SUBROUTINES *
CHdrirdriedriieieidnintinkdnhoiedeiodioidoirioioimnoitokidoioiefdriolriodoiododohdolideidod kg

SUBROUTINE FINDPHI(PHI,DT)
R T L L o L L L e

c COMPUTES THE VALUES OF THE PHI MATRIX
I L L L e e
REAL*4 PHI(4,4),DT

DO 1501 I=1,4
DO 1501 J=1,4
DO 1501 K=1,2
PHI(I,J)=0.0
1501 CONTINUE

C ¥ COMPUTE PHI MATRIX *¥*
DO 1500 I=1,4
PHI(I,I)=1.0
1500 CONTINUE
PHI(1,2)=DT
PHI(3,4)=DT

RETURN
END

SUBROUTINE INIT(XS1,YS1,XS2,YS2,BRG1,BRG2,XKK,PKK)
C Tkt st e sk ettt Y b e e e e e st e e e b e vae e v e v e v sk vene e s e e e e e e e ot e ke
C THIS ROUTINE INITIALIZES THE STATE
c AND ERROR COVARIANCE ESTIMATES
C Fedededevedevevedevevedederededere e deredede vk e dede e Yo vk i e e e dev e Yok e e e e v e e e e e e e e v e ek e ke
REAL*4 XKK(4,1),PKK(4,4)
REAL*4 XS1,YS1,XS2,YS2,BRG1,BRG2
REAL*4 NUMER,DENOM
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C *r* INITIAL STATE ESTIMATE %

NUMER=( -YS2*TAN(BRG2) )+( YS1*TAN(BRG1))+XS2-XS1
DENOM=TAN(BRG1) -TAN(BRG2)

XKK( 3, 1)=NUMER/DENOM

XKK(2,1)=0. 0
XKK(1,1)=(XKK(3,1)-YS1)*TAN(BRG1)+XS1
XKK(4,1)=0.0

C *&* INITIAL ERROR COVARIANCE ESTIMATE #*¥%*

DO 555 I=1,4
DO 555 J=1,4
PKK(I,J)=0.0
555 CONTINUE

PKK(1,1)=10000.0
PKK(3,3)=9999.9
PKK(2,2)=0. 25
PKK(4,4)=PKK(2,2)

RETURN
END

SUBROUTINE GETQ(DT,XKKM1L,P11,P33,Q)
Crriridedniriedtieioiieiriinieninieinidedoirrieirioieiooor

C CALCULATES STATE EXCITATION MATRIX Q
Crieiriridalrioinririarioiiceidnrinirioiniriokdeiridoinrioionrneicekdakoesionioakooeko koot
REAL*4 DT,XKKM1L(4,1),QT,P11,P33,NT,Q(4,4)
REAL*4 QM,VT,SIGTHT,SIGVT

SIGTHT=0. 0001
SIGVT=0. 0001

IF ((XKKM1L(2,1).EQ.0).OR. (XKKM1L(4,1).EQ. 0)) THEN
QT=0.0
GOTO 200

ENDIF

VT=SQRT( (XKKM1L(2,1)**2)+(XKKM1L( 4, 1)%*2))
IF (P11.GT.P33) THEN
Egg;(((XKKMIL(Z,1)/VT)**2)*SIGVT)+((XKKMIL(A,I)**Z)*SIGTHT)
S§=(((XKKM1L(4,1)/VT)**2)*SIGVT)+((XKKMIL(Z,1)**2)*SIGTHT)
ENDIF

200 NT=(DT#*4) /4. 0
QM=NT*QT

DO 556 I=1,4
DO 556 J=1,4
Q(I,J)=0.0
556 CONTINUE
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557

DO 557 I=1,4

Q(1,I)=QM
CONTINUE
CALL MATSCL(O.1,Q,4,4,Q)

RETURN
END

SUBROQUTINE MP(XS1,YS1,Xs2,YS2,BRG1,BRG2,2X,2Y)
edciefeiedeieieieiedeicieieideioeiciedeioiiekdeioiedoiioloiocieiedcleioiedeicok

THIS ROUTINE COMPUTES THE OBSERVED X, Y POSITIONS OF THE
TARGET USING SENSOR SHIP POSITIONS AND BEARINGS TO THE TARGET

REAL*4 Z2X,ZY
REAL*4 XS51,YS1,XS2,YS2,BRG1,BRG2
REAL*4 NUMER,DENOM

NUMER=( -YS2*TAN(BRG2))+(YS1*TAN(BRG1))+XS2-XS1
DENOM=TAN(BRG1) -TAN(BRG2)

ZY=NUMER/DENOM
ZX=(ZY-YS1)*TAN(BRG1)+XS1

RETURN
END

SUBROUTINE MANDET(TIME,DIFF,XT,YT,P1,P2,P13,XPL,YPL,
XpU, YPU,TL,TU)

c
c THIS SUBROUTINE COMPUTES THE THRESHOLD VALUES OF THE
C MANEUVER GATES USING ERROR ELLIPSE EQUATIONS
C Fededtededoiricdcledotoiriode
REAL*4 XT,YT,XPL(21),YPL(21),XPU(21),YPU(21),THE1,SIG2X
REAL*4 §X,SY,CT,P1,P13,P3,DIFF,TL,TU,C,D,DTOR,4,B,SIG2Y
REAL*4 THETA,DIV
INTEGER*4 NP,TIME,CO
DTOR=0. 0174529
DIV=30.0
=2%P13
B=P1-P3
THE1=0. 5*ATAN2(A,B)
C=(P1+P3)/2
D=0.0
IF (P13.EQ.0.0) GOTO 10
D=P13/SIN(2. 0*THE1)
10 SIG2X=ABS(C+D)

SIG2Y=ABS(C-D)

SX=( SIG2X**0. 5)

SY=(SIG2Y**0. 5)

IF (SX.GT.SY) THEN
TL=3%SX
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TU=8*SX
ELSE

TL=3%SY

TU=8%*SY
ENDIF
CT=COS(THE1)
ST=SIN(THE1)

IF (TIME.GT.O0) THEN
TL=TL/DIV
TU=TU/DIV

ENDIF

WRITE(3,1045)TIME,TL,TU,DIFF
1045 FORMAT(I4,3F10.4)

DO 100 IE=1,37
CO=IE-1
THETA=( (360/36)*C0O)*DTOR
XPU( IE )=TU*COS( THETA)+XT
YPU( IE)=TU*SIN( THETA)+YT
100 CONTINUE

DO 120 IE=1,37
CO=IE-1
THETA=((360/36)*C0)*DTOR
XPL(IE)=TL*COS(THETA)+XT
YPL(IE)=TL*SIN(THETA)+YT
120 CONTINUE
RETURN

END

SUBROUTINE MATMUL(A,B,L,M,N,C)

C ededededeieidedod

C THIS ROUTINE MULTIPLIES TWO MATRICES TOGETHER

C ® C(L,N) = A(L,M) * B(M,N)

C Fededederrdedededofarieieriiokdririoieksdedokodro ook sedododrirriededriokordoirrdriorioioioedoimookoe
REAL*4 A(L,M),B(M,N),C(L,N)

DO 10 I=1,L
DO 10 J=1,N
C(I,J)=0.0

10 CONTINUE

DO 100 I=1,
DO 100 J= 1,
DO 100 K= 1,
C(I,J) = C(
100 CONTINUE

X Z

»J) + A(I,K)*B(K,J)

RETURN
END
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SUBROUTINE MATRAN(A,B,N,M)
C dededdviedtdedeicieidiririeioirioionkdrntinomdeidioidroorobontriootdnniddrooroeoor o
C THIS ROUTINE TRANSPOSES A MATRIX
C ° B(M,N) = A"(N,M)
O Fefedeidedededriededededoloieioieddoldeirnireloinintdrickderinrioonininkofoioerinionineioionoeibek
REAL*4 A(N,M), B(M,N)

DO 100 I= 1,N
DO 100 J= 1,M
B(J,I) = A(I,J)
100 CONTINUE

RETURN
END

SUBROUTINE MATSCL(SC,A,N,M,C)
O Feeserrdededcdrdededdesriiarieinirirideiniieirioionideiiriniokodorriooeioneoioodeotioooeieoonioorice
c THIS ROUTINE MULTIPLIES A MATRIX WITH A SCALAR
c ® C(N,M) = SC * A(N,M)
C dedededeieioiioideieicidoiecioideiotleirioikirieidoooieiroiodokdrioinninniatintorinanr oo
REAL*4 A(N,M), C(N,M), SC

DO 100 I = 1,N
DO 100 J = 1,M
C(I,J) = SC*A(I,J)
100 CONTINUE

hh

RETURN
END

SUBROUTINE MATSUB(A,B,N,M,C)
FedededetedeRedefededededeedevercFerdede e dedeert e e de v et b e e e e e dedede dedie de e e
THIS ROUTINE SUBTRACTS TWO MATRICES
% C(N,M) = A(N,M) - B(N,M)
Yededederedevedede e dederevedrietededeedede et de vk de e e ek e dede de e ek
REAL*4 A(N,M),B(N,M),C(N,M)

DO 100 I

DO 100 J = 1,M

Cc(I,J)=A(I,J)-B(I,J)
100 CONTINUE

1,N

RETURN

END

SUBROUTINE MATADD(A,B,N,M,L,C)
k Tededededeiedeteiedetoiniedoicl %

Fevederededere ey

C

c THIS ROUTINE ADDS TWO MATRICES
c ? C(N,M) = A(N,M) + B(N,M)

c
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REAL*4 A(N,M),B(N,M),C(N,M,L)
DO 100 I = 1,N
DO 100 J = 1,M
C(I,J,L)=A(I,J)+B(I,])
100 CONTINUE

RETURN
END

SUBROUTINE MATINV (A,N,C)
CRdededededededesededeioiofeikdoicdeddoiedoieiedtieirioioieidrildriciorinrinnrirooimomnnniokdoooniokdoetior

C THIS ROUTINE COMPUTES THE INVERSE OF
c A MATRIX
c C(N,N)=INV |A(N,N)|

Crfdededededededededederedederiededeintdeiieieireiereiorioirioiriomtorrokdrnkdnotrninridotitoketnot
REAL*4 A(N,N),C(N,N),D(20,20)
DO 100 I = 1,N
DO 100 J = 1,N
100 D(I,J)=A(I,J)

DO 115 I=1,N
DO 115 J=N+1,2*N
115 D(1,J)=0.0

DO 120 I=1,N
J=I+N
120 D(I1,J)=1.0

DO 240 K=1,N
M=K+1
IF (K.EQ.N) GOTO 180
L=K
DO 140 I=M,N
140 IF (ABS(D(I,K)).GT.ABS(D(L,K))) L=I
IF (L.EQ.K) GOTO 180

DO 160 J=K,2*N

TEMP=D(K,J)
D(K,J)=D(L,J)

160 D(L,J)=TEMP

180 DO 185 J=M,2*N

185 D(K,J)=D(K,J)/D(K,K)

IF (K.EQ.1) GOTO 220
M1=K-1
DO 200 I=1,M1
DO 200 J=M,2*N
200 D(I,J)=D(I,J)-D(I,K)*D(K,J)

IF (K.EQ.N) GOTO 260

220 DO 240 I=M,N
DO 240 J=M,2*N
240 D(1,J)=D(I,J)-D(I,K)*D(K,J)
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260

265

£O 265 I=1,N
DO 265 J=1,N
K=J+N

C(I,J3)=D(I,K)

RETURN
END
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APPENDIX B.

INPUT DATA FILE FORMATTING ALGORITHM
C #¥% RAWDATA. FOR *¥**

Gierinbrtieitinbintintintint it ii il drrdednb it il dede i iedesiob e deslede deade e de e e e e e oo

C* THIS PROGRAM EMPLOYES A TARGET AND TWO SENSOR SHIPS. IT ASKS FOR
C* THE INITIAL POSITIONS, SPEEDS AND COURSES OF THE TARGET AND SENSOR
C* SHIPS. IT ALSO CALLS FOR MANEUVER PERIOD, THE SPEED AND THE COURSE
C* CHANGE OF THE TARGET DURING THIS MANEUVER PERIOD. THE OUTPUTS

C* WHICH CONSIST OF NOISY OR NOISE FREE BEARINGS FROM THE SENSOR SHIPS

L I

C* TO THE TARGET AND POSITIONS OF THE EACH SHIPS ARE STORED IN THE FILE*

C* TRKDATA.DAT TO BE USED BY THE PROGRAM <SHIPMANE.FOR>.
cmw**********m**mm*******ﬂm*m,-******mv**m***********m&***

C #¥%¥% VARIABLE DEFINATIONS #*¥*

BRG
CASE

Cs, CE
DTOR
END
HDGS
HDGT
HDGTD
MS, ME
N1, N2
NM

PER
RTOD
S§, SE
SPDS
SPDT
SPDTD
TIMED
UNHDGCH
UNSPDCH
XDIFF, YDIFF

XS
XT

a aaaaaaaQaaaaaaQaoaoQooaann

MEASURED TARGET BEARINGS.

INDICATOR OF THE NOISE EXISTANCE. THE NOISE EXISTS
FOR POSITIVE VALUE, NO NOISE FOR NEGATIVE VALUE.
START AND END HEADINGS OF THE MANEUVER.

DEGREE TO RADIAN CONVERSITION FACTOR.

END OF THE TRACKING PROBLEM.

SENSOR SHIP'S HEADING.

TARGET'S HEADING.

TOTAL HEADING CHANGE DURING THE MANEUVER.

START AND END TIMES OF THE MANEUVER.

MEASUREMENT NOISESS.

NUMBER OF MANEUVERS.

OBSERVATION PERIOD.

RADIAN TO DEGREE CONVERSITION FACTOR.

START AND END TIMES OF THE MANEUVER.

SENSOR SHIP'S SPEED.

TARGET'S SPEED.

TOTAL SPEED CHANGE DURING THE MANEUVER.

TOTAL MANEUVER TIME.

HEADING CHANGE PER OBSERVATION.

SPEED CHANCE PER OBSERVATION.

THE DISTANCES IN THE X AND Y DIRECTIONS FROM SENSOR
TO A TARGET POSITION.

SENSOR SHIP'S STATES.

TARGET'S STATES.

*#%% VARIABLE DECLERATIONS *¥¥*

REAL*4 XT(4,1),XS1(4,1),PHI(4,4),SPDS1,HDGS1,SPDS2,HDGS2,SP,HD
REAL*4 DT,SPDT,HDGT,Xs2(4,1),TEMP1(4,1),CASE,XDIFF1,YDIFF1
REAL*4 XDIFF2,YDIFF2,N1,N2,DTOR,RTOD,BRG1,BRG2,CS,CE(20),HDGTD
REAL*4 MS(20),ME(20),SS,SE(20),SPDTD,UNSPDCH(10),UNHDGCH(10)

INTEGER TIME,TIMEM1,NM,PER,END

C *** QOPEN DATA FILES #¥*
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OPEN(UNIT=2,FILE='NOISEl. DAT',STATUS='0OLD"')
OPEN(UNIT=3,FILE='NOISE2.DAT"STATUS='OLD')
OPEN(UNIT=4,FILE='TRKDATA. DAT',STATUS='NEW')

C Feedrinbdedeiriiidrinririoinbiidintidididedintdord bt ok deder feinide e et deoiedre e de ek sk

WRITE(*,*)'ENTER A NEGATIVE NUMBER FOR NOISELESS CASE;'
WRITE(*,*)'POSITIVE FOR NOISY CASE'
READ(*,*)CASE

TIMEM1=0
RTOD=57.29577951
DTOR=0. 017453293

WRITE(%*,*)'ENTER THE OBSERVATION PERIOD AND'
WRITE(*,*)'END OF THE OBSERVATION TIME.'
READ(*,*)PER,END

WRITE(*,%*)' INPUT DESIRED INITIAL X POSITION, Y POSITION,'
WRITE(*,*)'SPEED (IN KNOTS) AND COURSE (IN DEGREES) OF TARGET'
READ(*,*)XT(1,1),XT(3,1),SPDT,HDGT

SP=SPDT
HD=HDGT
XT(2,1)=(SPDT/60)*SIN(HDGT*DTOR)
XT(4,1)=(SPDT/60)*COS(HDGT*DTOR)

WRITE(*,%*)'FOR SENSOR 1:'

WRITE(*,%)' INPUT DESIRED INITIAL X POSITION, Y POSITION,'
WRITE(*,*)'SPEED (IN KNOTS) AND COURSE (IN DEGREES)'
READ(*,*)XS1(1,1),X51(3,1),SPDS1,HDGS1

XS1(2,1)=(SPDS1/60)*SIN(HDGS1*DTOR)
XS1(4,1)=(SPDS1/60)*COS(HDGS1*DTOR)

WRITE(*,%*)'FOR SENSOR 2:'

WRITE(*,%*)' INPUT DESIRED INITIAL X POSITION, Y POSITION,'
WRITE(*,*)'SPEED (IN KNOTS) AND COURSE (IN DEGREES)'
READ(*,*)XS2(1,1),XS2(3,1),SPDS2,HDGS2

X52(2,1)=(SPDS2/60)*SIN(HDGS2*DTOR)
XS52(4,1)=(SPDS2/60)*COS(HDGS2*DTOR)

WRITE(*,*) 'HOW MANY TIMES DO YOU WANT TO MAKE MANEUVER?'
READ(*,*)NM
DO 540 R=1,NM
WRITE(*,%)’ '
WRITE(*,*)'**MANEUVER #',K
510 WRITE(*,%)'ENTER THE STARTING AND ENDING TIMES OF'
WRITE(*,*)'THE MANEUVER #',K
READ(*,*)MS(K) ,ME(K)

IF ((MS(K).GT.END).OR. (ME(K).GT.END)) THEN
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WRITE(*,*)'CAREFULL! END OF THE TRACKING IS',END
WRITE(*,*)' '
GOTO 510

ENDIF

TIMED=ME(K) -MS(K)

520 WRITE(*,*)'ENTER THE STARTING AND ENDING SPEEDS OF'
WRITE(*,*)'THE SPEED MANEUVER #',K
READ(*,%*)SS,SE(K)

IF (SS.NE.SP) THEN
WRITE(*,*)'CAREFULL! CURRENT SPEED IS',SP
WRITE(*,*)' '
GOTO 520

ENDIF

SP=SE(K)
SPDTD=SE(K)-8S
UNSPDCH(K)=( SPDTD/TIMED)*PER

530 WRITE(*,*) 'ENTER THE STARTING AND ENDING COURSES OF'
_ WRITE(*,*)'THE COURSE MANEUVER #',K
READ(*,*)CS,CE(K)

IF (CS.NE.HD) THEN
WRITE(*,*)'CAREFUL! CURRENT HEADING IS',HD
WRITE(*,*)' '
GOTO 530

ENDIF

HD=CE(K)

HDGTD=CE(K)-CS

UNHDGCH(K)=(HDGTD/TIMED)*PER

540 CONTINUE

DO 610 J=1, 1000
DO 550 L=1,NM

IF ((TIME.GT.(MS(L))).AND. (TIME. LE. (ME(L)))) THEN

SPDT=SPDT+UNSPDCH(L)
HDGT=HDGT+UNHDGCH(L)

IF ((UNSPDCH(L).LT.0.0). AND. (SPDT. LT. SE(L))) SPDT=SE(L)
IF ((UNSPDCH(L).GT.0.0). AND. (SPDT. GT. SE(L))) SPDT=SE(L)

IF ((UNHDGCH(L).LT. 0. 0). AND. (HDGT. LT.CE(L))) HDGT=CE(L)
IF ((UNHDGCH(L).GT. 0.0). AND. (HDGT. GT.CE(L))) HDGT=CE(L)

XT(2,1)=(SPDT/60)*SIN(HDGT*DTOR)
XT(4,1)=(SPDT/60)*COS(HDGT*DTOR)

ENDIF
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550 CONTINUE

C % UPDATE TARGET AND SENSOR STATES TO MEASUREMENT TIME *¥*
DT=TIME-TIMEM1

C ##** COMPUTE PHI MATRIX *¥*
CALL FINDPHI(DT,PHI)

C % UPDATE TARGET STATES *¥**
CALL MATMUL(PHI,XT,4,4,1,TEMP1)
DO 560 I=1,4
XT(1,1)=TEMP1(I,1)
560 CONTINUE

C ¥k UPDATE SENSOR STATES ***

CALL MATMUL(PHI,XS1,4,4,1,TEMPI)
DO 570 I=1,4
XS1(I,1)=TEMP1(I,1)
570 CONTINUE

CALL MATMUL(PHI,XS2,4,4,1,TEMP1)
DO 580 I=1,4
Xs2(1,1)=TEMP1(I,1)
580 CONTINUE

XDIFF1=XT(1,1)-X51(1,1
YDIFF1=XT(3,1)-X51(3,1

)
)
XDIFF2=XT(1,1)-XS2(1,1)
YDIFF2=XT(3,1)~XS2(3,1)

READ(2,%*)N1
READ( 3,%*)N2

IF (CASE.GE.0.0) GOTO 590
N1=0.0
N2=0.0

590 BRG1=RTOD*ATAN2(XDIFF1,YDIFF1)+N1
IF (BRG1.LT.0.0) BRG1=BRG1+360
BRG2=RTOD*ATAN2(XDIFF2,YDIFF2)+N2
IF (BRG2.LT.0.0) BRG2=BRG2+360

WRITE(#,600)TIME,XT(1,1),XT(3,1),XSI(1,1),X81(3,1),
* BRG1,XS2(1,1),Xs2(3,1),BRG2
600 FORMAT(14,8F9.4)
TIMEM1=TIME
TIME=TIME+PER

IF (TIME.GT.END) GOTO 620
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610 CONTINUE

620 STOP
END

SUBROUTINE FINDPHI(DT,PHI)
ot L o L L L e L

c THIS ROUTINE COMPUTES PHI MATRIX
e L e L L e
C DIMENSIONS AND DECLERATIONS

REAL*4 PHI(4,4),0T

PHI(1,1)=1.0
PHI(1,2)=DT
PHI(1,3)=0.0
PHI(1,4)=0.0
PHI(2,1)=0.0
PHI(2,2)=1.0
PHI(2,3)=0.0
PHI(2,4)=0.0
PHI(3,1)=0.0
PHI(3,2)=0.0
PHI(3,3)=1.0
PHI(3 4)—DT

.0

.0

.0

.0

END
SUBROUTINE MATMUL(A,B,L,M,N,C)

R e T L s s
THIS ROUTINE MULTIPLIES TWO MATRICES TOGETHER
® C(L,N) = A(L,M) * B(M,N)
Fedeidedeleieirivieirinieloiniiricienicioieinivioieidnieieitinieincleioieieitioeienicoeioidcoloeeioloioioiooonok
DIMENSIONS AND DECLARATIONS
REAL*4 A(L,M),B(M,N),C(L,N)

aoaan

DO 10 I=1,L
DO 10 J=1,N
C(I,J)=0.0

10 CONTINUE

DO 100 I=1
DO 100 J=1
DO 100 K— 1

=C

100 CONTINUE

,J) + A(I,K)*B(K,J)
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